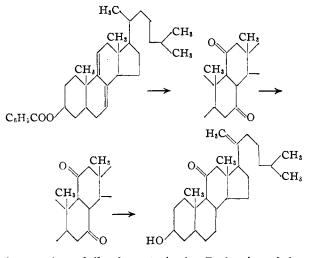
of reactions yielded spirostan-3 β -ol-11-one acetate (11-ketotigogenin ac etate), m.p. 224–229°; $\alpha_{\rm D}$ -39.4° (CHCl₃); found: C, 73.60; H, 9.08. Pyrolysis of the keto genin, oxidation of the pseudogenin and alkaline treatment of the latter provided Δ^{16} -allopregnene-3 β -ol-11,20-dione acetate, m.p. 183–185°; $\alpha_{\rm D}$ +64.5° (CHCl₃); $\lambda_{\rm max}$. 234.5 m μ , $E_{\rm m}$ 9050 (alcohol); found: C, 73.93; H, 8.83. By hydrogenation of the latter, allopregnane-3 β -ol-11,20-dione acetate (m.p. 141–143° (VIII); $\alpha_{\rm D}$ +88° (CHCl₃); found: C, 73.79; H, 8.90) was obtained which was identical with the product obtained by the Barbier-Wieland degradation of VII.

MERCK & CO., INC. RAHWAY, NEW JERSEY E. M. CHAMBERLIN W. V. RUYLE A. E. ERICKSON J. M. CHEMERDA L. M. ALIMINOSA R. L. ERICKSON G. E. SITA M. TISHLER

Received April 26, 1951

11-KETOLITHOCHOLIC ACID AND 11-KETOCHOLES-TANOL FROM THE $\Delta^{7,9(11)}$ -DIENES

Sir:


A practical route from cholic acid to methyl 3α ,- 7α -diacetoxy-12-keto- $\Delta^{9(11)}$ -cholenate and methyl 12-keto- $\Delta^{7,9(11)}$ -lithocholadienate has been reported.¹ Dr. S. Rajagopalan found that both esters are converted in good yield by Wolff-Kishner reduction into $\Delta^{7,9(11)}$ -lithocholadienic acid (m.p. 201°, dec., $[\alpha]_{\rm D}$ +121° Di; methyl ester, m.p. 120°, $[\alpha]_{\rm D}^{22}$ +119° Di, $\lambda_{\rm max}^{\rm EtOH}$ 244.5 m μ (log ϵ 4.2)), which forms a methyl ester acetate m.p. 149–150°, $[\alpha]D$ +123° Di, $\lambda_{\text{max}}^{\text{BtOH}}$ 244.5 (log ϵ 4.2) (C₂₇H₄₀O₄: C, 75.67; H, 9.64; found: C, 75.56; H, 9.63). We have now found that oxidation of this ester acetate with sodium dichromate dihydrate in acetic acid yields methyl 3α -acetoxy-7,8-oxido- $\Delta^{9(11)}$ -cholenate (m.p. 185°, $[\alpha]_D + 22^\circ$ Di; $C_{27}H_{40}O_5$: C, 72.94; H, 9.07; found, C, 73.24; H, 9.29) and methyl 3αacetoxy-7,11-diketo- Δ^{8} -cholenate (m.p. 115°, $[\alpha]_{D}$ $+36^{\circ}$ Di, $\lambda_{max.}^{EtOH}$ 271 m μ , log ϵ 3.85; C₂₇H₃₈O₆: C, 70.72; H, 8.35; found: C, 70.65; H, 8.38). The unsaturated oxide, formed also by perbenzoic acid oxidation, was isomerized by zinc and acetic acid, aqueous dioxane at 160°, or methanolic potassium hydroxide (re-esterification) to methyl 3α -acetoxy-7-keto- Δ^{8} -cholenate (m.p. 182.5° $[\alpha]_{D}$ -15° Di, $\lambda_{\max}^{\text{EtOH}}$ 254 mµ, log ϵ 4.04; found: C, 72.88; H, 9.13). Reduction of the unsaturated diketone with zinc and acetic acid afforded methyl 3α -acetoxy-7,11-diketocholenate (m.p. 162° , $[\alpha]_{D} + 25^{\circ}$ Di, C₂₇H₄₀O₆: C, 70.40; H, 8.75; found: C, 70.28; H, 8.94), which on Wolff-Kishner reduction followed by esterification, acetylation, and chromatography gave both methyl lithocholate acetate (m.p. 134°, $[\alpha]_D$ +44° An, no depression with authentic sample²) and methyl 3α -acetoxy-11-ketocholanate⁸

(1) L. F. Fieser, S. Rajagopalan, M. Tishler and E. Wilson, THIS JOURNAL, in press.

(2) Comparison sample: L. F. Fieser and S. Rajagopalan, THIS JOURNAL, 72, 5530 (1950).

(3) Comparison sample: R. B. Turner, V. R. Mattox, L. L. Engel, B. F. McKenzie and E. C. Kendall, J. Biol. Chem., 166, 345 (1946). (m.p. 131°, $[\alpha]_D$ +67° An, C₂₇H₄₂O₅: C, 72.61; H 9.48; found: C, 72.60, H, 9.69, no depression with authentic sample.

 Δ^{7} -Cholestenol (m.p. 123–125°), available from cholesterol by Raney-nickel hydrogenation of the 7-dehydro derivative, was converted by dehydrogenation with mercuric acetate and benzoylation into $\Delta^{7,(911)}$ -cholestadienyl benzoate, m.p. 134°, $[\alpha]_{\rm D}$ +32° Di, $\lambda_{\rm max}^{\rm EtOH}$ 243 m μ (log ϵ 4.0) (free alcohol), C₃₄H₄₈O₂: C, 83.55; H, 9.90; found: C, 83.81; H, 10.05). Oxidation of this diene with sodium dichromate in acetic acid-benzene at 25° yielded, after chromatography, Δ^{8} -cholestene-3 β ol-7,11-dione-3-benzoate (m.p. 150°, $[\alpha]_{\rm D}$ about +6° Di, $\lambda_{\rm max}^{\rm EtOH}$ 268 m μ , log ϵ 3.8, $\lambda_{\rm max}^{\rm Chf}$ 5.95 μ , C₃₄H₄₆O₄: C, 78.72; H, 8.94; found: C, 78.77; H, 9.19); a second oxidation product is formed but

has not been fully characterized. Reduction of the enedione with zinc dust and acetic acid gave cholestane-3 β -ol-7,11-dione-3-benzoate, m.p. 200°, $[\alpha]_D$ $+3^{\circ}$ Di, C₃₄H₄₈O₄: C, 78.42; H, 9.29; found: C, 78.37; H, 9.71. Alternately, the total product from oxidation of the diene benzoate (8 g.) was reduced with zinc dust and acetic acid. Chromatography of the mixture yielded the saturated diketone benzoate (m.p. 200°), some of the stenyl benzoate (m.p. 142°, $[\alpha]_D - 10^\circ$ Di), and 7-keto- Δ^8 -cholestenyl benzoate (m.p. 150°, $[\alpha]_D$ –13° Di, λ_{max}^{EtOH} 252 mμ, log ε 3.8, C₈₄H₄₈O₃: C, 80.90; H, 9.58; $\lambda_{\text{max}}^{\text{CHCl}_{15}}$ 5.95 μ ; found: C, 81.02; H, 9.87). Wolff-Kishner reduction of the saturated diketone gave a cholestanolone, m.p. 151°, $[\alpha]_D$ +49° Di, λ_{max}^{Chf} 5.89 μ; C₂₇H₄₆O₂: C, 80.54; H, 11.52; found: C, 80.66; H, 11.49. That cholesterol has been converted into the 11-keto stanol is evidenced by analogy to the synthesis in the bile acid series, by the presence of a carbonyl group (infrared) resistant to Wolff-Kishner reduction, and the $M_{\rm D}$ increment of $+96^\circ$ for the carbonyl group, as compared with known values $(+79^{\circ}, \text{ mean of 5 examples}, +60 \text{ to } +96^{\circ}.4$

CONVERSE MEMORIAL LABORATORY	Louis F. Fieser
Harvard University	Josef E. Herz
CAMBRIDGE, MASSACHUSETTS	WEI-YUAN HUANG
RECEIVED APRIL 25,	1951

⁽⁴⁾ D. H. R. Barton and W. Klyne, Chemistry and Industry, 26, 757 (1948).